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We study the onset of patterns in vertically oscillated layers of frictionless dissipative particles. Using both
numerical solutions of continuum equations to Navier-Stokes order and molecular dynamicssMDd simulations,
we find that standing waves form stripe patterns above a critical acceleration of the cell. Changing the
frequency of oscillation of the cell changes the wavelength of the resulting pattern; MD and continuum
simulations both yield wavelengths in accord with previous experimental results. The value of the critical
acceleration for ordered standing waves is approximately 10% higher in molecular dynamics simulations than
in the continuum simulations, and the amplitude of the waves differs significantly between the models. The
delay in the onset of order in molecular dynamics simulations and the amplitude of noise below this onset are
consistent with the presence of fluctuations which are absent in the continuum theory. The strength of the noise
obtained by fit to Swift-Hohenberg theory is orders of magnitude larger than the thermal noise in fluid
convection experiments, and is comparable to the noise found in experiments with oscillated granular layers
and in recent fluid experiments on fluids near the critical point. Good agreement is found between the mean
field value of onset from the Swift-Hohenberg fit and the onset in continuum simulations. Patterns are com-
pared in cells oscillated at two different frequencies in MD; the layer with larger wavelength patterns has less
noise than the layer with smaller wavelength patterns.
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I. INTRODUCTION

A. Background

A successful hydrodynamic theory of granular media
could allow scientists and engineers to exploit the powerful
techniques of fluid dynamics to describe granular phenom-
ena. Recent experimentsf1,2g and simulationsf3g demon-
strate the potential for hydrodynamic theory to describe
granular media; however, the validity of such methods has
not yet been established for a general description of granular
flow phenomenaf4–6g.

Several proposed rapid granular flow models use equa-
tions of motion for continuum fields—number densityn, ve-
locity u, and granular temperatureT s3

2T is the average ki-
netic energy due to random particle motiond f7–9g. In one
approach, particle interactions are modeled with binary, in-
elastic hard-sphere collision operators in kinetic theory to
derive continuum equations to Eulerf10g, Navier-Stokes
f11g, and Burnettf12g order. In this paper, we use three-
dimensional s3Dd simulations of continuum equations to
Navier-Stokes order and 3D inelastic hard-sphere molecular
dynamicssMDd simulations to investigate the onset of stand-
ing wave patterns in vertically oscillated granular layers.

B. Standing wave patterns in oscillated
granular layers

Vertically oscillated layers have provided an important
testbed for granular research. Flat layers of grains on a plate
oscillating sinusoidally in the direction of gravity exhibit
convection f13g, clustering f14g, shocksf15g, steady-state
flow fields far from the platef16g, and standing wave pattern
formation f17g.

A layer of grains on a plate oscillating sinusoidally in the
direction of gravity with frequencyf and amplitudeA will
leave the plate at some time in the cycle if the maximum
acceleration of the plate is greater than that of gravity. The
layer dilates above the plate, then collides with the plate later
in the cycle and is compressed on the plate by this collision.
Above a critical value of acceleration, standing wave pat-
terns spontaneously form in the layer. This pattern is subhar-
monic with respect to the plate, repeating every 2/f f17g.

Various subharmonic standing wave patterns, including
stripe, square, and hexagonal patterns, have been found ex-
perimentally, depending on the nondimensional frequency
f* = fÎH /g and the nondimensional accelerational amplitude
G=As2pfd2/g, whereH is the depth of the layer as poured,
andg is the acceleration due to gravityf17g.

Studies using hydrodynamic equations have not yet
yielded the standing wave patterns observed in experiments.
Here we investigate the onset of ordered standing wave pat-
terns using fully three-dimensionals3Dd simulations of con-
tinuum equations to Navier-Stokes order as well as molecu-
lar dynamicssMDd simulations. We use a continuum model
for frictionless, inelastic particles, and investigate the onset
of stripe patterns.

C. Fluctuating hydrodynamics

Near the onset of convection patterns in Rayleigh-Bénard
convection of fluids, fluctuations caused by thermal noise
create deviations from dynamics predicted from linear
theory. These fluctuations are described by the addition of
terms to the Navier-Stokes equations; this theory is known as
fluctuating hydrodynamicsf18–20g. Recent experiments
have shown that fluctuating hydrodynamics theory accu-
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rately describes the dynamics of fluids near the onset of con-
vection f21–23g.

Experimental investigations of coherent fluctuations and
pattern formation in oscillated granular layers have indicated
that fluctuations due to the movement of individual grains
play a much more significant role in the collective behavior
of granular media than do thermal fluctuations in ordinary
fluids f24g. Thus a consistent theory of granular hydrody-
namics may need to include fluctuations.

D. Model system

We simulate a layer of grains on an impenetrable plate
which oscillates sinusoidally in the direction of gravity. The
layer depth at rest is approximatelyH=5.4s, where the
grains are modeled as identical, frictionless spheres with di-
ameters and coefficient of restitutione=0.7. For most of the
paper, we study the onset of patterns as a function ofG,
while the frequency of plate oscillation is held constant at
f* =0.4174. This corresponds to a frequency of 56 Hz for
particles with a diameter of 0.1 mm . ForG*2.5, stripes are
seen experimentally for a range of parameters, includingf*

=0.4174,H=5.4 f17g. In Secs. III B and IV C, frequency is
varied to investigate the effect of changing frequency on pat-
tern formation.

Experimentsf25g and MD simulationsf26g indicate that
interparticle friction plays an important role in the standing
wave patterns. MD simulations with friction between par-
ticles have quantitatively reproduced the stripe, square, and
hexagonal subharmonic standing wave patterns seen experi-
mentally for a wide range of parametersf27g. However, MD
simulations using frictionless particles do not yield stable
square or hexagonal patterns, but only yield stripe patterns,
and exhibit the onset of patterns at lowerG than that seen for
frictional particlesf26g. This result is consistent with experi-
ments which show that reducing friction by adding graphite
can destabilize square patternsf25g. In this study, we neglect
the effects of friction in our continuum and MD simulations,
and study only the onset of stripe patterns in frictionless
layers. To investigate other patterns such as squares or hexa-
gons, simulations would need to include friction between
particles.

We use MD and continuum simulations to investigate the
dynamics of this system near onset, and use simulations of
the Swift-HohenbergsSHd model equation to compare our
results between the two. Section II describes the methods
used to simulate and analyze these patterns, Sec. III com-
pares patterns formed in MD and continuum simulations.
Section IV compares MD simulations to Swift-Hohenberg
theory, and Sec. V presents our conclusions.

II. METHODS

A. Molecular dynamics simulation

We use an inelastic hard sphere molecular dynamics
simulation, which was previously used in conjunction with
the continuum simulation used in this paper to model shock
waves in a granular shakerf28g. This same MD code with
friction added has been found to describe well the patterns

observed in experiments on oscillating granular layers
f27,29g.

The collision model assumes instantaneous binary colli-
sions in which energy is dissipated, as characterized by the
normal coefficient of restitutione. We neglect surface fric-
tion between particles, as well as between the particles and
the plate. To prevent inelastic collapse, we use a coefficient
of restitution which depends on the relative colliding veloc-
ity of the particles vn: esvnd=1–0.3svn/Îgsd3/4 for vn

,Îgs, ande=0.7 otherwisef27g.
The MD simulations are calculated in a box of sizeLx

3Ly in the horizontal directionsx andy, whereLx andLy are
varied to investigate patterns with different wavelengths. The
simulations use periodic boundary conditions in the horizon-
tal directions, an impenetrable lower plate which oscillates
sinusoidally betweenz=0 and z=2A, and an upper plate
fixed at a heightz=200s, as in the previous investigation of
shock propagationf28g.

For each MD simulation,sLx/sd3 sLy/sd36 particles
were used. In actual packings seen experimentally, 6 /s2 par-
ticles per unit area of the bottom plate correspond to a layer
depthH=5.4s as poured, representing a volume fractionn
<0.58.f27g. The total mass of the layer matches that of the
continuum simulations.

B. Continuum simulation

We use a continuum simulation previously used to model
shock waves in a granular shakerf28g. Our simulation nu-
merically integrates continuum equations of Navier-Stokes
order proposed by Jenkins and Richmanf11g for a dense gas
composed of frictionlessssmoothd, inelastic hard spheres. We
integrate these hydrodynamic equations to find number den-
sity, momentum, and granular temperature, using a second
order finite difference scheme on a uniform grid in three
dimensions with first order adaptive time steppingf28g

As in our MD simulations, the granular fluid in the con-
tinuum simulations is contained between two impenetrable
horizontal plates at the top and bottom of the container,
where the lower plate oscillates sinusoidally between height
z=0 andz=2A. In our MD simulations, the ceiling is fixed in
space at a height ofz=200s, but to minimize computation
time, the ceiling in continuum simulations is located at
height 80s above the lower plate and oscillates with the
bottom plate. In our previous study of shock formation,
changing the ceiling height from 200s to 80s resulted in a
fractional root mean square difference of less than 1% in the
shock location over one cyclef28g

As in the MD simulations, we use periodic horizontal
boundary conditions and boxes of sizeLx3Ly in the hori-
zontal directionsx andy, whereLx andLy are varied. In each
case, continuum simulations are compared to MD simula-
tions with the same horizontal dimensionsLx and Ly. The
numerical methods, boundary conditions at the top and bot-
tom plate, and grid spacing are the same as used in the pre-
vious study of shocksf28g.

The energy loss due to collisions in continuum simula-
tions is characterized by a single parameter, the normal co-
efficient of restitutione=0.70. Throughout this paper, we use
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units such that particles in MD simulations have mass unity,
and the total mass of the layer in the continuum simulations
matches that used in MD simulations.

C. Characterizing patterns

To visualize peaks and valleys formed by standing wave
patterns, we calculate the height of the center of mass of the
layer, zcmsx,y,td as a function of horizontal location in the
cell at various times in the cycle. At a given timet0 and
horizontal locationsx0,y0d, zcmsx0,y0,t0d is the center of
mass of all particles whose horizontal coordinates lie within
a bin of sizeDxbin3Dybin centered atsx0,y0d. For continuum
simulations, we use the simulation grid size to define the
bins: Dxbin=Dx=2s and Dybin=Dy=2s. For MD simula-
tions, we use bins of size 2s32s in Sec. III to compare to
continuum simulations with the same bin size. Peaks in the
pattern correspond to maxima ofzcm, and valleys correspond
to minima.

To measure the amplitude of patterns and fluctuations in
continuum and MD simulations, we examine the deviation of
the height of the center of mass of the layer as a function of
horizontal location in the cell from the center of mass height
averaged over the cell at that phase in the cycle,

csx,y,td = zcmsx,y,td − kzcmsx,y,tdl, s1d

wherex andy are the horizontal coordinates,t is the time in
the cycle,zcmsx,yd is the height of the center of mass of the
layer at horizontal locationsx,yd, and the brackets represent
an average over all horizontal locations in the cell at a given
time t.

Throughout this paper, we characterize the patterns at the
beginning of a sinusoidal oscillation cycle, such that the
plate is at its equilibrium position and moving upwards. Us-
ing this definition,kc2stdl represents the mean square devia-
tion of the height of the layer from the mean height of the
layer at that phase of the plate. We note thatkc2l is large for
layers with high amplitude patterns or fluctuations, and goes
to zero as the layer becomes perfectly flat.

In addition to kc2l, we distinguish between ordered pat-
terns sstripesd and disordered fluctuations by characterizing
the long range order of the pattern. To characterize the long
range order of the patterns, we first calculate the power spec-

trum of the pattern: Sskx,ky,td= uc̃skx,ky,tdu2, where

c̃skx,ky,td=e0
Lxe0

Lycsx,y,tde−ikxxe−ikyydxdy. We then trans-
form to polar coordinates ink space: kr =Îkx

2+ky
2, ku

=tan−1sky/kxd to find Sskr ,kud in the range 0øku,p. We
integrate radially to find the angular orientation of the power
spectrum:Sskud=e0

KSskr ,kudkrdkr, whereK=2pDxbin/Lx. We
bin ku into 21 bins betweenku=0 andku=p, and characterize
the long range order of the patterns by the fraction of the
total integrated power that lies in the bin with the maximum
power:

Pmax=
Smaxsud

E
0

p

Ssuiddku

, s2d

whereSmaxsud is the integrated power within an anglep /21
of the maximum value ofSsud. ThusPmax is the fraction of

the total power that lies within approximatelyp /21 of the
angular location of the maximum power. For a perfectly dis-
ordered state, with equal power in all directions,Pmax would
approach1

21<0.05, whilePmax=1 for a state with all power
in a single bin. ThusPmax provides a measure of order when
stripes form.

III. PATTERN ONSET AND DISPERSION

A. Stripe patterns

Experimental investigations of shaken granular layers
have shown that above a critical acceleration of the plateGc,
standing wave patterns form spontaneously. These patterns
oscillate subharmonically, repeating every 2/f, so that the
location of a peak of the pattern becomes a valley after one
cycle of the plate, and vice versaf17g.

Continuum and MD simulations produce standing wave
patterns forG=2.2 andf* =0.4174sFig. 1d. Alternating peaks
and valleys form a stripe pattern which oscillates atf /2 with

FIG. 1. An overhead view of a layer of grains, showing the
center of mass heightzcm as a function of horizontal positionsx,yd
in a cell with horizontal dimensionsLx3Ly=126s3126s, from sad
MD simulations andsbd continuum simulations. Peaks of the layer
corresponding to large center of mass heightzcm are shown in
white; valleys corresponding to lowzcm are shown in black.
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respect to the plate oscillation; a location in the cell which
represents a peak during one cycle will become a valley the
next cycle, and then return to a peak on the following cycle.
For a box of size 126s3126s in the horizontal direction, six
wavelengths fit in the box in both MD and continuum simu-
lations, yielding a wavelength of 21s±4s in both continuum
and MD simulationssFig. 1d.

B. Dispersion relations in continuum, MD, and experiment

Experiments have shown that the wavelengthl of stand-
ing wave patterns in shaken granular layers depends on the
frequency of the plate oscillationf30–32g. For a range of
layer depths and oscillation frequencies, experimental data
for frictional particles near the onset of patterns were found
to be fit by the functionl* =1.0+1.1f*−1.32±0.03, where l*

=l /H f32g.
We investigate the frequency dependence of standing

waves in continuum simulations and in MD simulations of
frictionless particles. Dimensionless accelerational amplitude
G=2.2 was held constant while dimensionless frequencyf*

was varied. Simulations were conducted in a box of horizon-
tal extent Lx=168s and Ly=10s. This orientation causes
stripe patterns to form parallel to they axis. The dominant
wavelength in each case was calculated fromSskx,ky,td by
finding the wave numberkx in the x direction which exhib-
ited the maximum power during one cycle of the oscillatory
state of the pattern. Due to the periodic boundary conditions
and finite box size, wavelengths must fit in the box an integer
number of times. This finite size effect of quantized wave-
length yields inherent uncertainty in the wavelength that
would be selected in an infinite box.

Wavelengths found in continuum and MD simulations are
compared to the dispersion relation fit to experimental data
in Fig. 2. Investigation is limited tof* .0.15 by the box size,
as only two wavelengths fit in the box in continuum simula-
tions at this frequency. Neither simulation produced patterns
for this box size forf* *0.45. Both simulations agree quite
well with the experimental fit throughout the range 0.15
& f* &0.45.

Comparison to the experimental fit shows that both MD
and continnum simulations produce wavelengths consistent
with experimental results for frictional particles. These data
indicate that friction seems to be unimportant in wavelength
selection through this parameter range.

C. Layers above and below the onset of patterns

Continuum and MD simulations exhibit pattern formation
above a critical acceleration of the plate; however, standing
wave patterns are not observed below a critical value ofG
sFig. 3d. For G=2.2, both MD fFig. 3sbdg and continuum
fFig. 3sddg simulations show well defined peaks and valleys
which form stripe patterns with two wavelengths fitting in
the box of sizeLx=Ly=42s. The only difference between
this system and that investigated in Sec. III A is the horizon-
tal size of the cell; these patterns look very similar to a sec-
tion of the patterns formed in the larger cellsFig. 1d. Reduc-
ing the accelerational amplitude toG=1.9 while keeping all
other parameters constant yields no ordered waves in either

MD fFig. 3sadg or continuumfFig. 3scdg. Thus both con-
tinuum and MD simulations appear to have a critical value of
G somewhere in the range 1.9øGcø2.2, such that no pat-
terns are formed forG,Gc, and patterns are formed forG
.Gc. This critical value is lower than that found in experi-
ments with frictional particles, where a similar onset of pat-
terns is found at a critical value ofG<2.5 f17g.

Despite the similarities, differences between MD and con-
tinuum simulations are observable. ForG=1.9, the con-
tinuum simulation yields a very smooth, flat layerfFig. 3scdg,
while MD exhibits visible fluctuationsfFig. 3sadg. For G
=2.2, the continuum simulations produce stripesfFig. 3sddg
which are much smoother than those found in MD simula-
tion fFig. 3sbdg.

To explore the differences between the two simulations,
we investigate the onset of patterns in more detail in con-
tinuum simulations and MD simulations separately.

D. Onset of patterns in continuum simulations

We investigate the onset of patterns in continuum simula-
tions by determiningkc2l of standing waves for different
values ofG. Each simulation begins with a flat layer above
the plate with small amplitude random fluctuations. The
simulation is run until it reaches a periodic state, at which
point kc2l is calculated as an average over ten cycles of the
same phase of the plate.

For G&1.95, the initial fluctuations decay rapidly until
the layer is quite flat, as represented by negligible values of
kc2l sFig. 4d. As G increases, there is a sudden onset to large
amplitude waves, as seen by the sudden jump inkc2l in Fig.
4. This onset occurs at the critical valueGc=1.955±0.005.
For G,Gc, initial fluctuations decay until the layer is very

FIG. 2. Dispersion relation for stripes which form perpendicular
to the long dimension of cells with horizontal dimensions 168s
310s. Data for continuum simulations are shown as triangles and
MD simulations as circles; points where continuum and MD simu-
lations yield the same wavelength are shown as squares. In both
continuum and MD simulations, the dominant wavelength of the
final oscillatory statel fits very well to the dispersion relation
found in experimentsl* =1.0+1.1f−1.32±0.03ssolid lined f32g. Error
bars in both simulations are calculated exclusively from discretiza-
tion due to periodic boundary conditions in a finite size box.
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flat, while for all layers above onsetsG.Gcd, these waves
produce ordered patterns of stripes similar to those in Fig.
3sdd

E. Onset of patterns in molecular dynamics simulations

We examine the onset of patterns in MD simulations us-
ing the same methods as for the continuum equations. Figure

4 shows the mean square height deviationkc2l as a function
of G for MD simulations as well as for continuum simula-
tions. For each value ofG, the simulation was run for 400
cycles of the plate until the layer reached a periodic state,
then kc2l and Pmax were calculated from an average of the
next 100 cycles.

As in continuum simulations,kc2l grows with increasing
G. Unlike the continuum results,kc2l is non-negligible in
MD simulations even forG,1.95. There is still a sharp in-
crease in the slope of the curve, but it is delayed untilG
.2.1.

IV. ROLE OF FLUCTUATIONS

The MD simulations display an onset of ordered stripes
that is delayed with respect to those found in continuum, and
exhibit non-negligiblekc2l even below the onset of ordered
stripes. Since the hydrodynamic model used in the con-
tinuum simulations does not include a stochastic noise term
characteristic of fluctuating hydrodynamics, the differences
between the continuum and MD simulations may be consis-
tent with the presence of noise in the MD simulations due to
the small number of particles per wavelength. To test the
hypothesis that these differences are consistent with the pres-
ence of fluctuations in molecular dynamics simulations, we
compare MD simulations to results from the Swift-
Hohenberg model.

FIG. 3. An overhead view of
the layer of grains, showing the
center of mass heightzcmsx,yd of
the layer as a function of location
in the box, forsad MD simulations
with a plate acceleration with re-
spect to gravityG=1.9, sbd MD
simulations withG=2.2, scd con-
tinuum simulations withG=1.9,
and sdd continuum simulations
with G=2.2. Peaks corresponding
to large zcm are shown in white,
while valleys corresponding to
small zcm are shown in black. The
grayscale for all four images is
given on the right.

FIG. 4. The mean square deviationkc2l of the local center of
mass height from the average center of mass height of the entire
layer as a function of accelerational amplitudeG for MD strianglesd
and continuumscirclesd simulations. The vertical dotted line repre-
sents the onset of stripe patterns in the continuum simulations.
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A. Swift-Hohenberg simulation

The Swift-HohenbergsSHd model was developed to de-
scribe thermal noise-driven phenomena near the onset of
long range order in Rayleigh-Bénard convectionf20g. Recent
experimental evidence suggests similar phenomena in
shaken granular experiments can be interpreted using the
methods of fluctuating hydrodynamicsf24g.

The SH model describes the time evolution of a scalar
field cSHsx ,td:

]cSH

]t
= fe − s1 + ¹2d2gcSH− cSH

3 + hsx,td, s3d

wheree is the bifurcation parameter, andh is a stochastic
noise term of strengthF, such that khsx ,tdhsx8 ,t8dl
=2Fdsx−x8ddst− t8d. In the absence of stochastic noisesF
=0d, called the mean fieldsMFd approximation, there is a
sharp onset of stripe patterns with long range order ate
=ec

MF=0 f20,33g. ForFÞ0, the effect of noise is to delay the
onset of long rangesLRd order to a new critical value:ec

LR

.0. The delay in onset is characterized byDec=ec
LR−ec

MF. In
addition, the presence of noise creates fluctuations below the
onset of long range orderse,ec

LRd.
The Swift-Hohenberg simulation displays a forward bifur-

cation to stripes at onset, while MD simulations show slight
s,1%d hysteresisf24g. A more complicated SH modelf34g
yields square patterns with hysteresis; however, in this work
we compare stripe formation in MD simulations a simpler
model of the effects of noise near a bifurcationfEq. s3dg.

We numerically solve the SH equation using the scheme
described in Ref.f35g, with the number of grid pointsN
=42342, and periodic boundary conditions. We use integra-
tion time steps of 0.5, and the size of each grid space in the
horizontal directionsDx=Dy=0.29 so that two wavelengths
of the resulting pattern fit in the box, to match MD and
continuum simulations. The simulation was allowed to run
for 8000 time steps to reach a final pattern; thenkcSH

2 l and
Pmax were calculated from an average of the next 2000 time
steps, in the same way askc2l andPmax were calculated for
MD and continuum simulations in Sec. II C.

B. Comparing Swift-Hohenberg and molecular
dynamics simulations

To find the strength of the noise and the mean field onset,
we fit the SH model to the data from MD simulationssFig. 5d
by varying three parameters:F, Dec, and an overall scale
factor, as in Refs.f23,24g.

Of the three parameters, only the noise strengthF changes
the overall shape of the curve. For a givenF, the SH simu-
lation is run for a range of −0.2øeø0.2; cSH and Pmax are
calculated from the steady state solution for each value ofe
and compared to MD simulations. For consistency,kc2l and
Pmax are calculated for MD simulations from bins of size
Dxbin=Dybin=s throughout this section, so that the number
of bins in both MD and SH simulations is 42342. Increas-
ing the bin size toDxbin=Dybin=2s does not change any of
the fit parameters to within our uncertainty.

Note kcSH
2 l in SH simulations is found as a function of

control parameter −0.2øeSHø0.2, while in MD simulations,
kcMD

2 l is found as a function of control parameter 1.7øG

ø2.3. To compare the onset of the SH model to the onset in
MD simulations, we defineeMD=sG−GC

MFd /GC
MF, whereGC

MF

is the mean field onset of patterns, comparable toeSH=0.
However, we do not knowa priori the value ofGC

MF.
We find thatkc2l changes relatively smoothly in MD and

SH simulations, making it difficult to pinpoint an onset of
patterns fromkc2l alone. However, there is a distinct onset of
long range order in the systemsFig. 5d. For lowG in MD, the
fluctuations are disorderedfcf. Fig. 3sadg, while for higherG,
standing wave stripe patterns are observedfcf. Fig. 3sbdg. A
clear transition from disordered fluctuations to an ordered
stripe pattern is demonstrated by the sharp increase inPmax
as G crosses the critical value for long range order, deter-
mined from Fig. 5sbd asGc

LR=2.15±0.01. A similar transition

FIG. 5. Comparison of MD simulationsstrianglesd to the Swift-
Hohenberg modelssolid linesd for sad kc2l, andsbd global ordering
Pmax fEq. s2dg, as a function of control parametere sbottom axisd
for SH, andG stop axisd for MD. The parameters for SH simulations
are noise strengthF=s1.2±0.2d310−2 and a delayed onset of long
range orderec

LR=0.094. The global ordering jumps sharply atec
LR

=0.094, corresponding toGc
LR=2.15 in MD sthe vertical dotted line

in the figured, representing a transition to stripe patterns, whilekc2l
increases smoothly through that transition. This fit predicts a mean
field onset value ofGc

MF=1.965±0.007, corresponding toec
MF=0

sthe vertical dashed line in the figured.
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to ordered stripes is seen in SH simulationsfFig. 5sbdg.
The onset of long range order is used to establish a cor-

respondence betweenG ande. For MD simulations, we mea-
sure the onset of long range order as the point of sharpest
increase inPmax fFig. 5sbdg. In SH simulations,Dec repre-
sents the onset of long range order. We match the single
point of steepest increase ofPmax between the two curves.
The measured valueDec in SH then predicts the mean field
onsetGC

MF corresponding toe=0.
Once the relationship betweenG ande is determined, the

overall scale factor for a givenF is found by a least squares
fit betweenkcSH

2 l andkcMD
2 l for the range 1.7øGøGc

LR fsee
Fig. 5sbdg. This minimization procedure gives the best pos-
sible fit for a given value ofF.

This entire procedure is repeated for varyingF, minimiz-
ing the squared residualR2=oskcMD

2 l−kcSH
2 ld2/N, whereN

is the number of binssFig. 6d. The best fit yields an onset of
long range order atDec=0.94, corresponding toGc

LR=2.15.
Figure 5sad showskc2l as a function ofe for SH simulations,
and as a function ofG for MD simulations.

The fit shows good agreement inkc2l belowe=0 sFig. 5d.
Although the parameters are fit only in the range 1.7øG
øGc

LR, agreement is reasonable even forG.Gc
LR.

The three parameter fit not only allows for agreement in
kc2l, but also matches the measure of orderPmax in the SH
model to that found in MD simulationfFig. 5sbdg. In both
MD and SH simulation, below the critical value of long
range order, the fluctuations are disordered, leading to a
small value inPmax. WhenG crosses the critical value,Pmax
jumps up significantly, and the observed patterns are ordered
stripes. Below the onset of stripes, when the fluctuations are
constantly shifting and changing, there is significant uncer-
tainty in finding the value ofPmax, as seen by the noisy curve
on the plot. Above this onset, however, the standing waves
produce stable stripes, andPmax plateaus and remains quite
constant, with good agreement between MD and SH simula-
tions. Finally, the mean field onsetGc

MF=1.965±0.007 pre-
dicted by this fit agrees remarkably well with the critical
value Gc=1.955±0.005 found in our simulations of Navier-
Stokes order continuum equations.

C. Effect of changing wavelength on strength of noise

If the noise effects arise from the finite particle number in
MD, we may expect that this effect will decrease in systems
in which there are more particles per wavelength of pattern.
Since the number of particles in a volumel3 increases with
increasing wavelength, we investigate the effect of changing
frequency on the onset of patterns in MD simulations. For
cells of horizontal extent 168s310s, layers shaken with a
frequencyf* =0.25 form peaks with a dominant wavelength
l=42s, which is twice the wavelength found for patterns
investigated atf* =0.4174ssee Fig. 2d.

We examine layers shaken atf* =0.25 in cells of sizeLx
=Ly=2l=84s, while holding constant layer depthH=5.4
and restitution coefficiente=0.70. We varyG through the
same range 1.7øGø2.3 investigated forf* =0.4174 earlier
in this paper. Figure 7 shows the growth ofkcSH

2 l normalized
by the mean center of mass height of the layer squared
s2kc2l / kzcml2=kszcm−kzcmld2l / kzcml2 for MD simulations
with frequenciesf* =0.25 andf* =0.4174.

The lower frequencysf* =0.25d exhibits a much sharper
jump in kcSH

2 l than that seen atf* =0.4174. Below this onset,
the curve is much flatter forf* =0.25, while atf* =0.4174, the
curve increases much more gradually through onset. Propor-
tionally smaller fluctuations compared to pattern amplitude is
consistent with lower noise strength forf* =0.25 than that
found for f* =0.4174. In addition, the rapid growth of peaks
and valleys occurs at a smaller value ofG for f* =0.25, cor-
responding to an onset even below the mean field onsetGc

MF

for the larger frequency.
We follow the same procedure as forf* =0.4174 to fit the

data from MD simulation to the Swift-Hohenberg model. We
note that for frictional particles, square patterns are formed
for f* =0.25; in the absence of friction, peaks and valleys
remain disordered, and no regular square lattice forms in
experiments or MD simulationsf25,26g ssee Fig. 8d. Thus the
onset of long range order is ill defined in this case. However,
this lower frequency exhibits a much sharper onset in the
growth ofkcSH

2 l, which is used to findDec. The best fit yields
a noise termF=s4±3d310−4, and a mean field onset of

FIG. 6. The squared residualR2 betweenkcMD
2 l and kcSH

2 l as a
function of the noise strengthF used in SH simulations. The best
least squares fit is given byF=s1.2±0.2d310−2.

FIG. 7. Comparison ofkcMD
2 l normalized by the mean center of

mass height of the layers2kc2l / kzcml2=kszcm−kzcmld2l / kzcml2 for
MD simulations withf* =0.25 ssquaresd and f* =0.4174strianglesd.
The lower frequency displays much smaller fluctuations below the
onset of patterns than does the higher frequency.
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Gc
MF=1.85±0.01. Our hydrodynamic simulations find the flat

layer becomes unstable atGc=1.84±0.01, which again
agrees well with the mean field onset found from the fit to
the SH model.

The noise strength atf* =0.4174 is approximately 30
times larger than the noise strength atf* =0.25. This leads to
qualitatively different behavior ofkcSH

2 l near onset, yielding
a smoother curve for the higher frequency and a sharper
onset for lower frequency. Finally, the onset is barely de-
layed for the lower frequency, withDec=0.01 for f* =0.25, as
compared toDec=0.10 for f* =0.4174.

Thus a change in frequency which increases the wave-
length at onset by a factor of 2 decreases the amount of noise
by a factor of 30. For Rayleigh-Bénard convection in ordi-
nary fluids, the functional dependence ofF on n, u, T, andl
is known f36,37g. However, this dependence is not known
for oscillated granular layers. Future investigation of the de-
pendence ofF on shaking parametersf* , G, and H, or on
hydrodynamic variablesn, u, T in experiment and MD simu-
lations may provide information on the dependence of the
noise strengthF that can be used in continuum simulations.

V. CONCLUSIONS

We have shown that continuum simulations can describe
important aspects of pattern formation in granular materials.
For a nondimensional frequencyf* =0.4174, both MD and
continuum simulations of granular materials form stripe pat-
terns of the same wavelength above a critical valueG.Gc,
and display no stripes forG,Gc. Further, the two simula-
tions yield the same dependence of wavelength on frequency.
These wavelengths agree with the dispersion relation found
experimentally for frictional particles.

The effect of fluctuations has been examined in simula-
tions of the Swift-Hohenberg model. The results deduced for

the mean field onset in MD simulations agree well with the
actual onset in continuum simulations for bothf* =0.4174
and f* =0.25.

We find the strength of the noise to beF=s1.2±0.2d
310−2 for stripes atf* =0.4174, andF=s4±3d310−4 for dis-
ordered squares atf* =0.25. The value determined in an ex-
periment for a slightly shallower granular layer atf* =0.28
was F=3.5310−3 f24g, which is within the range of noise
values obtained in this investigation. The smallest noise
strength found for our granular system is comparable to the
largest noise strength found thus far in experiments in ordi-
nary fluids, which obtainedF=7.1310−4 in measurements
near the critical point, while values typical for convection are
closer to 10−9 f23g. For f* =0.4174, the noise is strong
enough to delay onset of long range patterns by 10% in MD
simulation, and influences strongly the behavior of the sys-
tem even more than 20% below this onset. Thus noise plays
an important role in granular media near the onset of pat-
terns.

This study indicates that hydrodynamic theory holds
promise for investigating and understanding pattern forma-
tion in granular flows. However, quantitative comparisons
between continuum theory and experiment will require the
addition of noise terms into the equations. The addition of
noise would be an important step towards using the powerful
tools of hydrodynamic theory to investigate problems of pat-
tern formation in granular materials.

The absence of friction in these simulations restricts our
investigation to stripe patterns. Simulations without friction
have not yielded the square and hexagonal patterns seen in
experiments with frictional particlesf26g. Further research
into pattern formation using continuum simulations should
investigate the most effective way to incorporate friction be-
tween particles into the continuum simulations and should
examine how the strength of friction in the simulation affects
pattern formation in the system.

FIG. 8. An overhead view of the layer of grains from MD simulations atf* =0.25, forG=1.7, andG=2.2. Note how much less noise there
is below onset heresG=1.7d compared to the results forf* =0.4174 in Fig. 3. The images show the center of mass heightzcmsx,yd of the layer
as a function of location in the box. These MD simulations use a cell which isLx=Ly=84s in the horizontal directions. Peaks corresponding
to largezcm are shown in white, while valleys corresponding to smallzcm are shown in black. The grayscale for both images is given on the
right.
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