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Onset of patterns in an oscillated granular layer: Continuum and molecular
dynamics simulations

J. Bougie, J. Kreft, J. B. Swift, and Harry L. Swinney
Center for Nonlinear Dynamics and Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
(Received 16 September 2004; published 8 February)2005

We study the onset of patterns in vertically oscillated layers of frictionless dissipative particles. Using both
numerical solutions of continuum equations to Navier-Stokes order and molecular dyi&iDicsimulations,
we find that standing waves form stripe patterns above a critical acceleration of the cell. Changing the
frequency of oscillation of the cell changes the wavelength of the resulting pattern; MD and continuum
simulations both yield wavelengths in accord with previous experimental results. The value of the critical
acceleration for ordered standing waves is approximately 10% higher in molecular dynamics simulations than
in the continuum simulations, and the amplitude of the waves differs significantly between the models. The
delay in the onset of order in molecular dynamics simulations and the amplitude of noise below this onset are
consistent with the presence of fluctuations which are absent in the continuum theory. The strength of the noise
obtained by fit to Swift-Hohenberg theory is orders of magnitude larger than the thermal noise in fluid
convection experiments, and is comparable to the noise found in experiments with oscillated granular layers
and in recent fluid experiments on fluids near the critical point. Good agreement is found between the mean
field value of onset from the Swift-Hohenberg fit and the onset in continuum simulations. Patterns are com-
pared in cells oscillated at two different frequencies in MD; the layer with larger wavelength patterns has less
noise than the layer with smaller wavelength patterns.
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[. INTRODUCTION A layer of grains on a plate oscillating sinusoidally in the
direction of gravity with frequency and amplitudeA will
leave the plate at some time in the cycle if the maximum
A successful hydrodynamic theory of granular mediaacceleration of the plate is greater than that of gravity. The
could allow scientists and engineers to exploit the powerfulayer dilates above the plate, then collides with the plate later
techniques of fluid dynamics to describe granular phenomin the cycle and is compressed on the plate by this collision.
ena. Recent experiment4,2] and simulationd3] demon-  Above a critical value of acceleration, standing wave pat-
strate the potential for hydrodynamic theory to describeerns spontaneously form in the layer. This pattern is subhar-
granular media; however, the validity of such methods hasnonic with respect to the plate, repeating every pI7].
not yet been established for a general description of granular Various subharmonic standing wave patterns, including
flow phenomen4g4-6]. stripe, square, and hexagonal patterns, have been found ex-
Several proposed rapid granular flow models use equgerimentally, depending on the nondimensional frequency
tions of motion for continuum fields—number densityve-  *=f\H/g and the nondimensional accelerational amplitude
locity u, and granular temperatur'é(gT is the average ki- TI'=A(27f)?/g, whereH is the depth of the layer as poured,
netic energy due to random particle motidii—9]. In one  andg is the acceleration due to gravifg7].
approach, particle interactions are modeled with binary, in- Studies using hydrodynamic equations have not yet
elastic hard-sphere collision operators in kinetic theory toyielded the standing wave patterns observed in experiments.
derive continuum equations to Eulg¢iO], Navier-Stokes Here we investigate the onset of ordered standing wave pat-
[11], and Burnett[12] order. In this paper, we use three- terns using fully three-dimensionéD) simulations of con-
dimensional (3D) simulations of continuum equations to tinuum equations to Navier-Stokes order as well as molecu-
Navier-Stokes order and 3D inelastic hard-sphere moleculaar dynamics(MD) simulations. We use a continuum model

dynamics(MD) simulations to investigate the onset of stand-for frictionless, inelastic particles, and investigate the onset
ing wave patterns in vertically oscillated granular layers.  of stripe patterns.

A. Background

B. Standing wave patterns in oscillated C. Fluctuating hydrodynamics

granular layers Near the onset of convection patterns in Rayleigh-Bénard

Vertically oscillated layers have provided an importantconvection of fluids, fluctuations caused by thermal noise
testbed for granular research. Flat layers of grains on a platereate deviations from dynamics predicted from linear
oscillating sinusoidally in the direction of gravity exhibit theory. These fluctuations are described by the addition of
convection[13], clustering[14], shocks[15], steady-state terms to the Navier-Stokes equations; this theory is known as
flow fields far from the plat¢16], and standing wave pattern fluctuating hydrodynamics[18—20. Recent experiments
formation[17]. have shown that fluctuating hydrodynamics theory accu-
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rately describes the dynamics of fluids near the onset of corsbserved in experiments on oscillating granular layers
vection[21-23. [27,29.

Experimental investigations of coherent fluctuations and The collision model assumes instantaneous binary colli-
pattern formation in oscillated granular layers have indicatedions in which energy is dissipated, as characterized by the
that fluctuations due to the movement of individual grainsnormal coefficient of restitutior. We neglect surface fric-
play a much more significant role in the collective behaviortion between particles, as well as between the particles and
of granular media than do thermal fluctuations in ordinarythe plate. To prevent inelastic collapse, we use a coefficient
fluids [24]. Thus a consistent theory of granular hydrody- of restitution which depends on the relative colliding veloc-
namics may need to include fluctuations. ity of the particles vy e(v)=1-0.3v,/\go)¥* for v,
<\go, ande=0.7 otherwisg27].

The MD simulations are calculated in a box of sizg
] i . X Ly in the horizontal directions andy, whereL, andL, are

We simulate a layer of grains on an impenetrable platgaried to investigate patterns with different wavelengths. The
which oscillates sinusoidally in the direction of gravity. The simylations use periodic boundary conditions in the horizon-
layer depth at rest is approximatelf=>5.40, where the {5 girections, an impenetrable lower plate which oscillates
grains are modeled as identical, frictionless spheres with d'sinusoidally betweerz=0 and z=2A, and an upper plate
ametero and coefficient of restitutioa=0.7. For most of the  fixed at a heightz=200g, as in the previous investigation of
paper, we study the onset of patterns as a functiod’,of gpock propagatiofi2s].

V\!hile the frequ_ency of plate oscillation is held constant at For each MD simulation(L,/o) X (L,/0) X 6 particles

f :(_).4174._ This _corresponds to a frequency of_ 56 Hz foryere used. In actual packings seen experimentalky? GAr-
particles with a diameter of 0.1 mm . Fbi= 2.5, stripes are  icjes per unit area of the bottom plate correspond to a layer
seen experimentally for a range of parameters, including depthH=5.45 as poured, representing a volume fractien

=0.4174,H=5.4[17]. In Secs. Il B and IV C, frequency is g 5g [27]. The total mass of the layer matches that of the
varied to investigate the effect of changing frequency on patzontinuum simulations.

tern formation.

Experimentg25] and MD simulationg 26] indicate that
interparticle friction plays an important role in the standing B. Continuum simulation
wave patterns. MD simulations with friction between par- We use a continuum simulation previously used to model
ticles have quantitatively reproduced the stripe, square, an&wock waves in a granular shak@g]. Our simulation nu-
hexagonal subharmonic standing wave patterns seen expeyl

ally f i ¢ 6671 H MD erically integrates continuum equations of Navier-Stokes
mentaily for a wide range of parame ¢ ]. owever, order proposed by Jenkins and Richnjaf] for a dense gas
simulations using frictionless particles do not yield stable

. ! composed of frictionlesmooth), inelastic hard spheres. We
square or hexagonal patterns, but only yield stripe pattern

S ‘cl’ntegrate these hydrodynamic equations to find number den-
a'nd.exh|b|t the onset of p_atterns fﬁ Ioviéthan tha’g Seen fOI: sity, momentum, and granular temperature, using a second
frictional particles[26]. This result is consistent with experi-

. X e . __order finite difference scheme on a uniform grid in three
ments which show that reducing friction by adding graphltedimensions with first order adaptive time steppiag]
can destabilize square pattef@s]. In this study, we neglect

he eff f friction i . d MD simulati As in our MD simulations, the granular fluid in the con-
the eflects of friction in our continuum an simulations, n,um simulations is contained between two impenetrable

and study only the onset of stripe patterns in friCt'onlesﬁworizontal plates at the top and bottom of the container,

layers. TO mve_zstlgate other patterns_ such as squares or he)ﬂﬁhere the lower plate oscillates sinusoidally between height
gons, simulations would need to include friction bet\NeenZ:O andz=2A. In our MD simulations, the ceiling is fixed in

pa:';:/cles. MD and i imulati 0 tiate th space at a height af=2000, but to minimize computation
€ use VL) and continuum simulations fo investigate € - the ceiling in continuum simulations is located at

dynamics of this system near onset, and use simulations eight 8@ above the lower plate and oscillates with the

the Swift-HohenbergSH) mode_l equation to compare ourdbottom plate. In our previous study of shock formation
results between the two. Section Il describes the metho éhanging the ceiling height from 260t 80 resulted in a !

used o simulate and af‘a'yze these patterns, S_ec. ”I. CON5 ctional root mean square difference of less than 1% in the
pares patterns formed in MD and continuum SImUIatlonSShOCk location over one cycl[@8]
Section IV compares MD simulations to Swift-Hohenberg A< ir, the MD simulations, we use periodic horizontal

theory, and Sec. V presents our conclusions. boundary conditions and boxes of sikgx L, in the hori-
zontal directionsc andy, whereL, andL, are varied. In each
Il. METHODS case, continuum simulations are compared to MD simula-

tions with the same horizontal dimensiobg and L. The
numerical methods, boundary conditions at the top and bot-

We use an inelastic hard sphere molecular dynamictom plate, and grid spacing are the same as used in the pre-
simulation, which was previously used in conjunction with vious study of shockg28].
the continuum simulation used in this paper to model shock The energy loss due to collisions in continuum simula-
waves in a granular shakg28]. This same MD code with tions is characterized by a single parameter, the normal co-
friction added has been found to describe well the patternsfficient of restitutionre=0.70. Throughout this paper, we use

D. Model system

A. Molecular dynamics simulation
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units such that particles in MD simulations have mass unity, 126c
and the total mass of the layer in the continuum simulations
matches that used in MD simulations.

C. Characterizing patterns

To visualize peaks and valleys formed by standing wave
patterns, we calculate the height of the center of mass of the
layer, z.(X,y,t) as a function of horizontal location in the
cell at various times in the cycle. At a given tinig and
horizontal location(Xy,Yo), Zem(Xo,Yo.to) IS the center of
mass of all particles whose horizontal coordinates lie within
a bin of sizeAxy, X Aypin centered atxg,yp). For continuum
simulations, we use the simulation grid size to define the
bins: AXyi,=Ax=20 and Ayy;,=Ay=2¢. For MD simula-
tions, we use bins of sizes2< 2¢ in Sec. Il to compare to
continuum simulations with the same bin size. Peaks in the
pattern correspond to maxima gf,,, and valleys correspond
to minima.

To measure the amplitude of patterns and fluctuations in
continuum and MD simulations, we examine the deviation of
the height of the center of mass of the layer as a function of
horizontal location in the cell from the center of mass height
averaged over the cell at that phase in the cycle,

lib(xvyvt) = zcm(XaY:t) - <ZCm(X1y1t)>1 (1)

wherex andy are the horizontal coordinatesis the time in
the cycle,z.,(Xx,y) is the height of the center of mass of the
layer at horizontal locatiofix,y), and the brackets represent
an average over all horizontal locations in the cell at a given
time t.

Throughout this paper, we characterize the patterns at the
beginning of a sinusoidal oscillation cycle, such that the 0 X 1260
plate is at its equilibrium position and moving upwards. Us-
ing this definition,(y2(t)) represents the mean square devia- FIG. 1. An overhead view of a layer of grains, showing the
tion of the height of the layer from the mean height of thecenter of mass heighty, as a function of horizontal positiofx,y)
layer at that phase of the plate. We note ) is large for ~ in a cell with horizontal dimensioris, X L, =1260X 1260, from (a)
layers with high amplitude patterns or fluctuations, and goed!P Simulations andb) continuum simulations. Peaks of the layer
to zero as the layer becomes perfectly flat. corresponding to large center of mass heighy, are shown in

In addition to<¢2>, we distinguish between ordered pat- white; valleys corresponding to low,,, are shown in black.
terns (stripes and disordered fluctuations by characterizing ) o )
the long range order of the pattern. To characterize the lon§f!€ total power that lies within approximatety/21 of the

range order of the patterns, we first calculate the power spe@ngular location of the maximum power. For a perfectly dis-
2 where ordered state, with equal power in all directioRg,,, would

trum of _thLe ) pattern: i(kkiv'_‘iyk-t)—w(kwky’t) ' approachy; ~0.05, whileP,,,=1 for a state with all power
ke, Ky, =g [ex,y, e edxdy. We then trans- in g single bin. Thus,,.provides a measure of order when
form to polar coordinates ink space: k=\K;+k, Kk,  stripes form.

:tan‘l(ky/kx) to find Sk ,ky) in the range Gk,<m. We

integrate radially to find the angular orientation of the power

spectrum:S(ky) = [KS(k, , ko) dk., whereK =27Axy;,/L,. We lIl. PATTERN ONSET AND DISPERSION

bin k, into 21 bins betweek,=0 andk,=1r, and characterize
the long range order of the patterns by the fraction of the
total integrated power that lies in the bin with the maximum ~ EXxperimental investigations of shaken granular layers

A. Stripe patterns

power: have shown that above a critical acceleration of the dlate
standing wave patterns form spontaneously. These patterns
pmaxzsma—*(g), ) oscillate subharmonically, repeating everyf2$o that the
m location of a peak of the pattern becomes a valley after one
fo S(e)dk, cycle of the plate, and vice ver$a7).

Continuum and MD simulations produce standing wave
whereS,,(#) is the integrated power within an angtg21  patterns fodl’=2.2 andf" =0.4174(Fig. 1). Alternating peaks
of the maximum value o§(6). Thus P, is the fraction of and valleys form a stripe pattern which oscillated /& with
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respect to the plate oscillation; a location in the cell which 16

represents a peak during one cycle will become a valley the

next cycle, and then return to a peak on the following cycle. g4

For a box of size 126X 1260 in the horizontal direction, six % 1ol

wavelengths fit in the box in both MD and continuum simu-

lations, yielding a wavelength of 2% 4¢ in both continuum 10r

and MD simulationgFig. 1). 8l |

experiment|

B. Dispersion relations in continuum, MD, and experiment 6r
Experiments have shown that the wavelengtbf stand- 4t :

. . A continuum only

ing wave patterns in shaken granular layers depends on the ol| o MDony

frequency of the plate oscillatiofB0—32. For a range of = continuum & MD

layer depths and oscillation frequencies, experimental data 0 - ‘ - s

for frictional particles near the onset of patterns were found g g1 a2 e Qi f 08

to be fit by the function\"=1.0+1.%""132*0.03 \where \"

=\/H [32]. FIG. 2. Dispersion relation for stripes which form perpendicular

We investigate the frequency dependence of standing the long dimension of cells with horizontal dimensions 68
waves in continuum simulations and in MD simulations of X 10c. Data for continuum simulations are shown as triangles and
frictionless particles. Dimensionless accelerational amplitud®D simulations as circles; points where continuum and MD simu-
I'=2.2 was held constant while dimensionless frequeficy lations yield the same wavelength are shown as squares. In both
was varied. Simulations were conducted in a box of horizoncontinuum and MD simulations, the dominant wavelength of the
tal extentL,=168s and L,=10c. This orientation causes final oscillatory state): fits very well to the dispersion relation
stripe patterns to form parallel to theaxis. The dominant found in experimenta”=1.0+1.1*32%0.%%(solid line) [32]. Error
wavelength in each case was calculated flﬁrk;(,ky,t) by t_)ars in both sir_nul_ations are calculgt_ed e>_<c|usi_vgly frpm discretiza-
finding the wave numbek, in the x direction which exhib- tion due to periodic boundary conditions in a finite size box.
ited the maximum power during one cycle of the oscillatory
state of the pattern. Due to the periodic boundary condition$D [Fig. 3@] or continuum[Fig. 3(c)]. Thus both con-
and finite box size, wavelengths must fit in the box an integefinuum and MD simulations appear to have a critical value of
number of times. This finite size effect of quantized wave-I' somewhere in the range E9°:<2.2, such that no pat-
length yields inherent uncertainty in the wavelength thatterns are formed fof’ <I';, and patterns are formed fdr
would be selected in an infinite box. >I'.. This critical value is lower than that found in experi-

Wavelengths found in continuum and MD simulations arements with frictional particles, where a similar onset of pat-
compared to the dispersion relation fit to experimental dat&erns is found at a critical value df~2.5[17].
in Fig. 2. Investigation is limited té" >0.15 by the box size, Despite the similarities, differences between MD and con-
as only two wavelengths fit in the box in continuum simula-tinuum simulations are observable. Fb=1.9, the con-
tions at this frequency. Neither simulation produced patterngnuum simulation yields a very smooth, flat lay&ig. 3(c)],
for this box size forf"=0.45. Both simulations agree quite While MD exhibits visible fluctuationgFig. 3@]. For I
well with the experimental fit throughout the range 0.15=2.2, the continuum simulations produce stripEgy. 3(d)]
<f" '<0.45. which are much smoother than those found in MD simula-

Comparison to the experimental fit shows that both MDtion [Fig. 3(b)].
and continnum simulations produce wavelengths consistent To explore the differences between the two simulations,
with experimental results for frictional particles. These datawe investigate the onset of patterns in more detail in con-
indicate that friction seems to be unimportant in wavelengtHinuum simulations and MD simulations separately.

selection through this parameter range.
D. Onset of patterns in continuum simulations

C. Layers above and below the onset of patterns We investigate the onset of patterns in continuum simula-
Continuum and MD simulations exhibit pattern formation tions by determining(y?) of standing waves for different
above a critical acceleration of the plate; however, standinyalues ofl’. Each simulation begins with a flat layer above
wave patterns are not observed below a critical valug of the plate with small amplitude random fluctuations. The
(Fig. 3. For I'=2.2, both MD[Fig. 3(b)] and continuum simulation is run until it reaches a periodic state, at which
[Fig. 3(d)] simulations show well defined peaks and valleysPoint (¢ is calculated as an average over ten cycles of the

which form stripe patterns with two wavelengths fitting in same phase of the plate.

the box of sizeL,=L,=420. The only difference between For I'=1.95, the initial fluctuations decay rapidly until
this system and that investigated in Sec. lll A is the horizonthe layer is quite flat, as represented by negligible values of
tal size of the cell; these patterns look very similar to a sec{#?) (Fig. 4). AsT increases, there is a sudden onset to large
tion of the patterns formed in the larger céfig. 1). Reduc- amplitude waves, as seen by the sudden jum@f in Fig.

ing the accelerational amplitude 16=1.9 while keeping all 4. This onset occurs at the critical vallig=1.955+0.005.
other parameters constant yields no ordered waves in eithor I' <TI', initial fluctuations decay until the layer is very
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I'=1.8 =22

FIG. 3. An overhead view of
the layer of grains, showing the
center of mass heigtt,(x,y) of
the layer as a function of location
in the box, for(a) MD simulations
with a plate acceleration with re-
spect to gravity'=1.9, (b) MD
simulations with'=2.2, (¢) con-
tinuum simulations withI'=1.9,
and (d) continuum simulations
with I'=2.2. Peaks corresponding
to large z.,, are shown in white,
while valleys corresponding to
small z., are shown in black. The
grayscale for all four images is
given on the right.

S
=
=
£
o
o
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0 426 0 X 0o

flat, while for all layers above onséf’ >T), these waves 4 shows the mean square height deviatigf) as a function
produce ordered patterns of stripes similar to those in Figof I for MD simulations as well as for continuum simula-

3(d) tions. For each value df, the simulation was run for 400
cycles of the plate until the layer reached a periodic state,
E. Onset of patterns in molecular dynamics simulations then (4?) and P, were calculated from an average of the

We examine the onset of patterns in MD simulations us€Xt 100 cycles.

ing the same methods as for the continuum equations. Figure A IN continuum simulations,y) grows with increasing
I'. Unlike the continuum resultsy?) is non-negligible in

MD simulations even fol’ <1.95. There is still a sharp in-

0.8 i
' crease in the slope of the curve, but it is delayed ukitil
<Y2> : >2.1.
0.6} / i continuum
o155 IV, ROLE OF FLUCTUATIONS
041 The MD simulations display an onset of ordered stripes
that is delayed with respect to those found in continuum, and
exhibit non-negligible(y?) even below the onset of ordered
0.2y stripes. Since the hydrodynamic model used in the con-
tinuum simulations does not include a stochastic noise term
!ff:ﬁ' characteristic of fluctuating hydrodynamics, the differences
0¥ . =1 T 23 between the continuum and MD simulations may be consis-

tent with the presence of noise in the MD simulations due to
FIG. 4. The mean square deviatio@?) of the local center of ~the small number of particles per wavelength. To test the

mass height from the average center of mass height of the entidypothesis that these differences are consistent with the pres-
layer as a function of accelerational amplitddéor MD (triangle3 ~ ence of fluctuations in molecular dynamics simulations, we

and continuunicircles simulations. The vertical dotted line repre- compare MD simulations to results from the Swift-
sents the onset of stripe patterns in the continuum simulations. Hohenberg model.
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A. Swift-Hohenberg simulation 17 1.9 21 r 2.3

The Swift-HohenbergSH) model was developed to de-
scribe thermal noise-driven phenomena near the onset of
long range order in Rayleigh-Bénard convectjaf]. Recent
experimental evidence suggests similar phenomena in
shaken granular experiments can be interpreted using the
methods of fluctuating hydrodynamif24].

The SH model describes the time evolution of a scalar

field gg(X,1):

a
A= [ L+ = e kD),

where € is the bifurcation parameter, anglis a stochastic

noise term of strengthF, such that (n(x,t)n(x’',t")) 030
=2F8(x—=x")8(t—t"). In the absence of stochastic noide (b)

=0), called the mean fieldMF) approximation, there is a o o =1.965
sharp onset of stripe patterns with long range ordeg at meX \
=eMF=0[20,33. ForF #0, the effect of noise is to delay the 5l

onset of long rangéLR) order to a new critical valuezstR

>0. The delay in onset is characterized g, = es?—€¥F. In

addition, the presence of noise creates fluctuations below the

onset of long range ordée< e-F). :
The Swift-Hohenberg simulation displays a forward bifur- A R 15

cation to stripes at onset, while MD simulations show slight AdLA ‘AA‘““A“A >

(<1%) hysteresig§24]. A more complicated SH mod¢B4| /

0.1

yields square patterns with hysteresis; however, in this work 1 : 3
we compare stripe formation in MD simulations a simpler 0.1 0 0.1 e 02
model of the effects of noise near a bifurcatidty. (3)].

We numerically solve the SH equation using the scheme F|G. 5. Comparison of MD simulatiorigriangles to the Swift-
described in Ref[35], with the number of grid pointtN  Hohenberg modelsolid lines for (a) (¢2), and(b) global ordering
=42X 42, and periodic boundary conditions. We use integraP,,., [Eq. (2)], as a function of control parameter(bottom axi$
tion time steps of 0.5, and the size of each grid space in thésr SH, andl" (top axi9 for MD. The parameters for SH simulations
horizontal directions\x=Ay=0.29 so that two wavelengths are noise strengthi=(1.2+0.2 X 1072 and a delayed onset of long
of the resulting pattern fit in the box, to match MD and range ordere-*=0.094. The global ordering jumps sharply &if
continuum simulations. The simulation was allowed to run=0.094, corresponding t5;%=2.15 in MD (the vertical dotted line
for 8000 time steps to reach a final pattern; tiigf,) and  in the figure, representing a transition to stripe patterns, wiy€)
P..axWere calculated from an average of the next 2000 timdncreases smoothly tm?_th that transition. This fit predlctg_a mean
steps, in the same way $$2> and P,,, were calculated for field ons_et value offc_ —_1.9651_0.007, corresponding kﬂ" =0
MD and continuum simulations in Sec. Il C. (the vertical dashed line in the figure

. . Note (¢4,) in SH simulations is found as a function of
B. Comparing Swift-Hohenberg and molecular control parameter —02 eg;,< 0.2, while in MD simulations,
dynamics simulations (Zp) is found as a function of control parameter £7

To find the strength of the noise and the mean field onsets 2.3. To compare the onset of the SH model to the onset in
we fit the SH model to the data from MD simulatiofig. 5 ~ MD simulations, we defineyp=(I'-T¢") /T, wherel¢*
by varying three parameter§, Ae,, and an overall scale is the mean field onset of patterns, comparablegg=0.
factor, as in Refs[23,24. However, we do not knova priori the value ofl“'(\:"F.

Of the three parameters, only the noise strefigtfhanges We find that(¢?) changes relatively smoothly in MD and
the overall shape of the curve. For a givienthe SH simu-  SH simulations, making it difficult to pinpoint an onset of
lation is run for a range of ~-02 e<0.2; iy and P are  patterns fron{4?) alone. However, there is a distinct onset of
calculated from the steady state solution for each value of long range order in the syste(fig. 5). For lowI in MD, the
and compared to MD simulations. For consistedgy) and  fluctuations are disorderddf. Fig. 3a)], while for higherT,
Pmax are calculated for MD simulations from bins of size standing wave stripe patterns are obser&dFig. Ib)]. A
Axpin=Aypin=0o throughout this section, so that the numberclear transition from disordered fluctuations to an ordered
of bins in both MD and SH simulations is 4242. Increas- stripe pattern is demonstrated by the sharp increass,ip
ing the bin size taAxy;,=Ayy,n=20 does not change any of asI' crosses the critical value for long range order, deter-
the fit parameters to within our uncertainty. mined from Fig. Bb) asl“tR=2.15¢O.01. A similar transition
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X107 01
A<y "
R 2
5L A <zZcm>
A
4,
A 0.05¢
A
3 A \
a A
A N
2 A AL Ad, f=04174
A Aa
A
1t A : ({\- , ; ‘ -
7 1.9 2.1 r 23
0 : : : : . ,
0 0.01 0.02 0.03 0.04 . 0.05 FIG. 7. Comparison ofyZ,,) normalized by the mean center of

mass height of the layes®(y)/(zen)?={(Zem=(Zer)) 2/ {Zemy? for

FIG. 6. The squared residug? between(y,,) and(yZ,) asa  MD simulations withf*=.O.25(square)sandf*=0.4174(triangles.
function of the noise strength used in SH simulations. The best The lower frequency displays much smaller fluctuations below the
least squares fit is given Hy=(1.2+0.9 X 1072, onset of patterns than does the higher frequency.

to ordered stripes is seen in SH simulatigRgy. 5(b)]. C. Effect of changing wavelength on strength of noise

The onset of long range order is U.SEd to establish a cor- ¢ ihe nojse effects arise from the finite particle number in
respor;]dence bet\rvleéhand e. For I(\j/ID S|murllat|on§, Wef mhea- MD, we may expect that this effect will decrease in systems
sure the prllaset oF.ong t:anglje gL er asltt_e point of s arpeﬂ which there are more particles per wavelength of pattern.
increase inPray [Fig. S(b)]. In simulations Ae; repre- gince the number of particles in a volurk@increases with

sents the onset of long range order. We match the Sir]glmcreasin wavelength, we investigate the effect of changin
point of steepest increase &%, between the two curves. Y gtn, gal : . ging
frequency on the onset of patterns in MD simulations. For

The measured valuge, in SH then predicts the mean field
ured v cc ! pred I cells of horizontal extent 168X 100, layers shaken with a

onsetl'¥F corresponding t&=0. ! , ;
Once the relationship betwedhand e is determined, the fréquencyf =0.25 form peaks with a dominant wavelength

overall scale factor for a giveR is found by a least squares A =420, which is twice the wavelength found for patterns
fit between(y2,) and(yZ,) for the range 1.ZI'<I'-R[see  investigated af =0.4174(see Fig. 2

Fig. 5(b)]. This minimization procedure gives the best pos- e examine layers shaken £t=0.25 in cells of sizd.,
sible fit for a given value of. =Ly=2\=840, while holding constant layer deptH=>5.4

This entire procedure is repeated for Varyﬁgminimiz_ and restitution coefficiene=0.70. We Va*ryl" through the
ing the squared residu®=3((yZ,p)—(¥4.))?/N, whereN ~ same range 1%I'<2.3 investigated fof =0.4174 earlier
is the number of bingFig. 6). The best fit yields an onset of in this paper. Figure 7 shows the growth(g#,) normalized
long range order afe,=0.94, corresponding tB'ER:2,15_ by the mean center of mass height of the layer squared
Figure Fa) shows(¢?) as a function of for SH simulations, X ¢?)/(Ze)*={(Zem—(Ze))>)/{ze® for MD  simulations

and as a function oF for MD simulations. with frequencies” =0.25 andf’ =0.4174.

The fit shows good agreement(#®) below e=0 (Fig. 5). The lower frequency(f'=0.25 exhibits a much sharper
Although the parameters are fit only in the range<lI7  jump in(y4,) than that seen & =0.4174. Below this onset,
<T.R agreement is reasonable even For LR, the curve is much flatter fdf =0.25, while atf*=0.4174, the

The three parameter fit not only allows for agreement incurve increases much more gradually through onset. Propor-
(4?), but also matches the measure of orBgg, in the SH  tionally smaller fluctuations compared to pattern amplitude is
model to that found in MD simulatiofiFig. 5b)]. In both  consistent with lower noise strength f6r=0.25 than that
MD and SH simulation, below the critical value of long found for f*=0.4174. In addition, the rapid growth of peaks
range order, the fluctuations are disordered, leading to and valleys occurs at a smaller valuelofor f=0.25, cor-
small value inP,,,, WhenT crosses the critical valu®,,,,  responding to an onset even below the mean field dﬂ%t
jumps up significantly, and the observed patterns are orderd@r the larger frequency. X
stripes. Below the onset of stripes, when the fluctuations are We follow the same procedure as fior=0.4174 to fit the
constantly shifting and changing, there is significant uncerdata from MD simulation to the Swift-Hohenberg model. We
tainty in finding the value oP,,,, as seen by the noisy curve note*that for frictional particles, square patterns are formed
on the plot. Above this onset, however, the standing wave#or f'=0.25; in the absence of friction, peaks and valleys
produce stable stripes, am},,, plateaus and remains quite remain disordered, and no regular square lattice forms in
constant, with good agreement between MD and SH simulagxperiments or MD simulatior{25,26| (see Fig. 8 Thus the
tions. Finally, the mean field onst=1.96510.007 pre- onset of long range order is ill defined in this case. However,
dicted by this fit agrees remarkably well with the critical this lower frequency exhibits a much sharper onset in the
valueT,=1.955+0.005 found in our simulations of Navier- growth of(y4,), which is used to find\e,. The best fit yields
Stokes order continuum equations. a noise termF=(4+3)x10% and a mean field onset of
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I'=1.7 ['=2.2

84c 146

126

0 0 840

0 840

FIG. 8. An overhead view of the layer of grains from MD simulation$'at0.25, forl'=1.7, and"=2.2. Note how much less noise there
is below onset herd =1.7) compared to the results fér=0.4174 in Fig. 3. The images show the center of mass height,y) of the layer
as a function of location in the box. These MD simulations use a cell whickFs, =840 in the horizontal directions. Peaks corresponding
to largez,,, are shown in white, while valleys corresponding to sragjjare shown in black. The grayscale for both images is given on the
right.

I'MF=1.85+0.01. Our hydrodynamic simulations find the flatthe mean field onset in MD simulations agree well with the

layer becomes unstable df.=1.84+0.01, which again actual onset in continuum simulations for bath=0.4174

agrees well with the mean field onset found from the fit toand f"=0.25.

the SH model. We find the strength of the noise to Be=(1.2+0.2
The noise strength af'=0.4174 is approximately 30 X 107 for stripes aff"=0.4174, andF=(4+3) X 10™* for dis-

times larger than the noise strengthfat0.25. This leads to  ordered squares &t=0.25. The value determined in an ex-

qualitatively different behavior ofy/3,) near onset, yielding Periment for a slightly shallower granular layer fat=0.28

a smoother curve for the higher frequency and a sharpef/@s F=3.5x 10" [24], which is within the range of noise

onset for lower frequency. Finally, the onset is barely de_values obtained in this investigation. _The smallest noise

layed for the lower frequency, withe,=0.01 forf =0.25, as  Stength found for our granular system is comparable to the

compared ta\e,=0.10 forf*:b 4172 ' largest noise st_rength f_ound thus far in experiments in ordi-
c = : . nary fluids, which obtained=7.1xX10* in measurements

Thus a change in frequency which increases the WaVEiear the critical point, while values typical for convection are

length at onset by a factor of 2 decreases the amount of NoiISG ser to 109 [23]. For f'=0.4174, the noise is strong

by a factor of 30. For Rayleigh-Bénard convection in ordi-gqq,q1 to delay onset of long range patterns by 10% in MD
nary fluids, the functional dependencefobnn, u, T, and\  gjmyjation, and influences strongly the behavior of the sys-
is known [36,37. However, this dependence is not known em even more than 20% below this onset. Thus noise plays
for oscillated granular layers. Future |£1vest|gat|on of the deyp important role in granular media near the onset of pat-
pendence ofF on shaking parameters, I, andH, or on  tgrns.
hydrodynamic variables, u, T in experiment and MD simu-  This study indicates that hydrodynamic theory holds
lations may provide information on the dependence of thgromise for investigating and understanding pattern forma-
noise strengtliF that can be used in continuum simulations. tion in granular flows. However, quantitative comparisons
between continuum theory and experiment will require the
V. CONCLUSIONS ad_dition of noise terms into the equations. '_I'he addition of
noise would be an important step towards using the powerful
We have shown that continuum simulations can describgools of hydrodynamic theory to investigate problems of pat-
important aspects of pattern formation in granular materialstern formation in granular materials.
For a nondimensional frequendy=0.4174, both MD and The absence of friction in these simulations restricts our
continuum simulations of granular materials form stripe pat-investigation to stripe patterns. Simulations without friction
terns of the same wavelength above a critical vdloel'c,  have not yielded the square and hexagonal patterns seen in
and display no stripes foF <I'.. Further, the two simula- experiments with frictional particleg26]. Further research
tions yield the same dependence of wavelength on frequencinto pattern formation using continuum simulations should
These wavelengths agree with the dispersion relation founghvestigate the most effective way to incorporate friction be-
experimentally for frictional particles. tween particles into the continuum simulations and should
The effect of fluctuations has been examined in simulaexamine how the strength of friction in the simulation affects
tions of the Swift-Hohenberg model. The results deduced fopattern formation in the system.
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